W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Anadarko’s mission is to deliver a competitive and sustainable rate of return to shareholders by exploring for, acquiring and developing oil and natural gas resources vital to the world’s health and welfare. As of year-end 2017, the company had 1.49 billion barrels equivalent of proved reserves, making it one of the world’s largest independent oil and natural gas exploration and production companies. For more information about Anadarko, please visit http://www.anadarko.com.

W-OG0.1a

(W-OG0.1a) Which business divisions in the oil & gas sector apply to your organization?

Upstream

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2017</td>
<td>December 31 2017</td>
</tr>
</tbody>
</table>

W0.3

(W0.3) Select the countries/regions for which you will be supplying data.

United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised
W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure? Yes

W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Operations</td>
<td>Water data for international operations is immaterial to the company's overall portfolio and is not included in this report. Once operated international operations move beyond exploratory, the company will consider including water data from these operations.</td>
</tr>
</tbody>
</table>

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th></th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Important</td>
<td>Important</td>
<td>We rely on the direct use of freshwater for drilling and for completions operations. Freshwater is important for the drilling process, in order to protect local aquifers. There is less need for freshwater for indirect purposes.</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Important</td>
<td>Consistent with our efforts to draw from a variety of sources so as to limit competition with municipal, agricultural and other consumers, we rely on recycled, brackish and produced water for completions operations in many of our larger plays. Sufficient amounts of such water is important in order for us to limit the amount of freshwater necessary for operations.</td>
</tr>
</tbody>
</table>

W1.2
Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – volumes from water stressed areas</td>
<td>76-99</td>
<td>Teams in water stressed areas track water withdrawn from ground and surface water sources.</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>76-99</td>
<td>Sources are tracked.</td>
</tr>
<tr>
<td>Produced water associated with your metals & mining sector activities - total volumes</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oil & gas sector activities - total volumes</td>
<td>76-99</td>
<td>Produced water that is associated with production is tracked.</td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>76-99</td>
<td>Water withdrawals are analyzed for quality.</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>76-99</td>
<td>Water withdrawals are tracked.</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>76-99</td>
<td>Water withdrawal destinations are tracked.</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>76-99</td>
<td>Water withdrawal volumes by treatment method are tracked.</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>76-99</td>
<td>Water discharge standard effluent parameters are tracked.</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>76-99</td>
<td>Discharge quality temperature is recorded.</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>76-99</td>
<td>Water consumption is tracked.</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>76-99</td>
<td>Water recycled/reused is tracked.</td>
</tr>
<tr>
<td>The provision of fully-functioning, safely managed WASH services to all workers</td>
<td>100%</td>
<td>WASH services are tracked.</td>
</tr>
</tbody>
</table>

W1.2b

What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals 18448</td>
<td>Higher</td>
<td>The increase was due to increased activity in our West Texas operations</td>
</tr>
<tr>
<td>Total discharges 17126</td>
<td>Higher</td>
<td>The increase was due to increased activity in our West Texas operations</td>
</tr>
<tr>
<td>Total consumption 1155</td>
<td>Higher</td>
<td>The increase due to how discharges in Delaware Basin were measured.</td>
</tr>
</tbody>
</table>

W-OG1.2c
In your oil & gas sector operations, what are the total volumes of water withdrawn, discharged, and consumed – by business division – and what are the trends compared to the previous reporting year?

<table>
<thead>
<tr>
<th>Total withdrawals - Upstream</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total discharges – Upstream</td>
<td>17126</td>
<td>Higher</td>
<td>The increase was due to increased activity in our West Texas operations</td>
</tr>
<tr>
<td>Total consumption – Upstream</td>
<td>1155</td>
<td>Higher</td>
<td>The increase was due to increased activity in our West Texas operations and divestitures.</td>
</tr>
<tr>
<td>Total withdrawals - Downstream</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total discharges – Downstream</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total consumption – Downstream</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total withdrawals – Chemicals</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total discharges – Chemicals</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total consumption – Chemicals</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total withdrawals – Other business division</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total discharges – Other business division</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total consumption – Other business division</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

Provide the proportion of your total withdrawals sourced from water stressed areas.

<table>
<thead>
<tr>
<th>% withdrawn from stressed areas</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>52</td>
<td>Higher</td>
<td>WBCSD Global Water Tool</td>
</tr>
</tbody>
</table>

Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>8204</td>
<td>About the same</td>
<td>This was due to a similar level of activity in the DJ Basin</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>8935</td>
<td>Much higher</td>
<td>The increase was primarily due to the increased use of brackish water in West Texas.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>984</td>
<td>Please select</td>
<td>The decrease was primarily due to the increased use of brackish water.</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Produced water</td>
<td>Relevant</td>
<td>205</td>
<td>Higher</td>
<td>This was due to increased recycling/reuse in the DJ basin.</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>
(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>19.35</td>
<td>About the same</td>
<td>This was due to similar offshore activity.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Relevant</td>
<td>15055</td>
<td>Higher</td>
<td>The increase was due to increased activity in our West Texas operations</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

(W1.2j) What proportion of your total water use do you recycle or reuse?

<table>
<thead>
<tr>
<th>% recycled and reused</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>2-10</td>
<td>Higher</td>
</tr>
</tbody>
</table>

(W-OG1.2j) What proportion of your total water use do you recycle or reuse in your operations associated with the oil & gas sector?

<table>
<thead>
<tr>
<th>% recycled and reused</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td>1-25</td>
<td>Higher</td>
</tr>
<tr>
<td>Downstream</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Chemicals</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Other business division</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

(W-OG1.3) Do you calculate water intensity for your activities associated with the oil & gas sector?

No, but we intend to do so within the next two years.

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

No, we do not engage on water with our value chain.

W1.4d
(W1.4d) Why do you not engage with any stages of your value chain on water-related issues and what are your plans?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 We are planning to do so within the next two years</td>
<td>It is important but not an immediate business priority.</td>
</tr>
</tbody>
</table>

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

Yes

W2.1a

(W2.1a) Describe the water-related detrimental impacts experienced by your organization, your response, and total financial impact.

Country/Region
United States of America

River basin
Mississippi River

Type of impact driver
Regulatory

Primary impact driver
Regulatory uncertainty

Primary impact
Increased capital costs

Description of impact
Federal, state and local agencies are evaluating current water regulations and may require more extensive permitting requirements and additional water quality monitoring and treatment. This may result in permit delays and higher capital and operating costs.

Primary response
Increase investment in new technology

Total financial impact

Description of response
We are implementing water strategies to expand optionality for water sourcing, use and disposal. We are increasing investments in new technology and infrastructure. Anadarko staff regularly engages with public policy makers on water issues, including chairing the Energy Water Initiative (EWI). The EWI is comprised of 22 oil and gas companies working to enhance water technology for the industry. Multiple pilot tests for varying levels of water treatment were conducted.

Country/Region
United States of America

River basin
Rio Grande

Type of impact driver
Regulatory

Primary impact driver
Regulatory uncertainty
Primary impact
Increased capital costs

Description of impact
Federal, state and local agencies are evaluating current water regulations and may require more extensive permitting requirements and additional water quality monitoring and treatment. This may result in permit delays and higher capital and operating costs.

Primary response
Increase investment in new technology

Total financial impact

Description of response
We are implementing water strategies to expand optionality for water sourcing, use and disposal. We are increasing investments in new technology and infrastructure. Anadarko staff regularly engages with public policy makers on water issues, including chairing the Energy Water Initiative (EWI). The EWI is comprised of 22 oil and gas companies working to enhance water technology for the industry.

Country/Region
United States of America

River basin
Colorado River (Pacific Ocean)

Type of impact driver
Regulatory

Primary impact driver
Regulatory uncertainty

Primary impact
Increased operating costs

Description of impact
Federal, state and local agencies are evaluating current water regulations and may require more extensive permitting requirements and additional water quality monitoring and treatment. This may result in permit delays and higher operating costs.

Primary response
Engage with regulators/policymakers

Total financial impact

Description of response
The financial impact is unknown.

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
No

W3. Procedures

W-OG3.1
A variety of chemicals are used and byproducts are generated during the E&P process. These pollutants are identified and characterized throughout the process. A variety of spill prevention measures are employed to ensure pollutants are prevented from reaching water. These include measures such as Spill Prevention Controls and Contermeasure plans, secondary containment, inspections, cathodic protection, and training. Additionally, we have permitted discharges at both onshore and offshore facilities. In order to ensure potential pollutants are not having a detrimental impact on water ecosystems, a robust treatment and characterization process is utilized.

(W-OG3.1a) For each business division of your organization, describe how your organization minimizes the adverse impacts on water ecosystems or human health of potential water pollutants associated with your oil & gas sector activities.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Business division</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons</td>
<td>Upstream</td>
<td>A compound of hydrogen and carbon, such as any of those that are the chief components of petroleum and natural gas. Hydrocarbons have the potential to pollute water via migration in liquid form due to a spill.</td>
<td>Measures to prevent spillage, leaching and leakages</td>
<td>A variety of spill prevention measures are employed to ensure pollutants are prevented from reaching water. These include measures such as Spill Prevention Controls and Contermeasure plans, secondary containment, inspections, cathodic protection, and training.</td>
</tr>
<tr>
<td>Drilling fluids</td>
<td>Upstream</td>
<td>Drilling fluids are fluids used while drilling a wellbore that aid in lubrication and bringing cuttings to the surface. Drilling fluids have the potential to pollute water via migration in liquid form due to a spill.</td>
<td>Measures to prevent spillage, leaching and leakages</td>
<td>A variety of spill prevention measures are employed to ensure pollutants are prevented from reaching water. These include measures such as Spill Prevention Controls and Contermeasure plans, secondary containment, inspections, cathodic protection, and training.</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Upstream</td>
<td>A variety of chemical compounds are used throughout the drilling, completions, and operations phase of oil and gas production. Chemicals have the potential to pollute water via migration in liquid form due to a spill.</td>
<td>Measures to prevent spillage, leaching and leakages</td>
<td>A variety of spill prevention measures are employed to ensure pollutants are prevented from reaching water. These include measures such as Spill Prevention Controls and Contermeasure plans, secondary containment, inspections, cathodic protection, and training.</td>
</tr>
<tr>
<td>Cuttings</td>
<td>Upstream</td>
<td>Cuttings are the broken bits of rock that are brought back to the surface while drilling a wellbore. Cuttings have the potential to pollute water and migrate to water when spilled.</td>
<td>Measures to prevent spillage, leaching and leakages</td>
<td>A variety of spill prevention measures are employed to ensure pollutants are prevented from reaching water. These include measures such as Spill Prevention Controls and Contermeasure plans, secondary containment, inspections, cathodic protection, and training.</td>
</tr>
</tbody>
</table>

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed.

(W3.3a)
(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage

Full

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Not defined

How far into the future are risks considered?
2 to 5 years

Type of tools and methods used
Enterprise Risk Management

Tools and methods used
Other, please specify (Internal company methods)

Comment
Water risks are assessed as part of an enterprise risk management framework. Each asset undergoes a risk assessment to ensure water related risks are addressed.

Supply chain

Coverage

None

Risk assessment procedure
<Not Applicable>

Frequency of assessment
<Not Applicable>

How far into the future are risks considered?
<Not Applicable>

Type of tools and methods used
<Not Applicable>

Tools and methods used
<Not Applicable>

Comment

Other stages of the value chain

Coverage

None

Risk assessment procedure
<Not Applicable>

Frequency of assessment
<Not Applicable>

How far into the future are risks considered?
<Not Applicable>

Type of tools and methods used
<Not Applicable>

Tools and methods used
<Not Applicable>

Comment
W3.3b

(W3.3b) Which of the following contextual issues are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Contextual Issue</th>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Anadarko considers and evaluates water availability and protection of the water quality of local aquifers in decision making and risk evaluation.</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Anadarko considers and evaluates water the protection of the water quality of local aquifers in decision making and risk evaluation.</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Local stakeholders' perceptions and concerns are included in the assessment.</td>
</tr>
<tr>
<td>Implications of water on your key commodities/raw materials</td>
<td>Relevant, always included</td>
<td>Water is an important commodity in producing oil and natural gas; thus, we work to estimate the implications of lack of availability of water.</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
<td>Anadarko considers and closely monitors risks associated with current water regulations in each assessment, including for water quality, availability, and disposal.</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
<td>Anadarko includes scenario analysis in the risk assessment tool, where appropriate.</td>
</tr>
<tr>
<td>Access to fully-functioning, safely managed WASH services for all employees</td>
<td>Relevant, always included</td>
<td>We provide fully functioning WASH services at all office buildings on a global basis.</td>
</tr>
<tr>
<td>Other contextual issues, please specify</td>
<td>Please select</td>
<td></td>
</tr>
</tbody>
</table>

W3.3c
(W3.3c) Which of the following stakeholders are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Relevant, not included</td>
<td>At this time, the primary customers are not factored into the risk assessment, but may be considered in the future.</td>
</tr>
<tr>
<td>Employees</td>
<td>Relevant, sometimes included</td>
<td>At this time, employees are not factored into the risk assessment, but may be considered in the future.</td>
</tr>
<tr>
<td>Investors</td>
<td>Relevant, always included</td>
<td>Investors' concerns are considered in the risk assessment, particularly for areas of water scarcity.</td>
</tr>
<tr>
<td>Local communities</td>
<td>Relevant, always included</td>
<td>The local community is factored into the risk assessment for current and future potential risks.</td>
</tr>
<tr>
<td>NGOs</td>
<td>Relevant, always included</td>
<td>NGOs that are relevant to the industry are considered in the risk assessment, particularly for water availability and quality.</td>
</tr>
<tr>
<td>Other water users at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Other water users are considered in the risk assessment, particularly for water availability and quality.</td>
</tr>
<tr>
<td>Regulators</td>
<td>Relevant, always included</td>
<td>Regulators are always considered as relevant stakeholders for water assessments, including the level of concern about the water use from the industry.</td>
</tr>
<tr>
<td>River basin management authorities</td>
<td>Relevant, sometimes included</td>
<td>These authorities are included in a risk assessment, in our operating areas where they exist.</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Relevant, sometimes included</td>
<td>Certain areas have groundwater conservation districts and other statutorily created groups that are included in the risk assessment.</td>
</tr>
<tr>
<td>Suppliers</td>
<td>Relevant, sometimes included</td>
<td>Service companies must run their equipment with the water that we supply, so they are a stakeholder in terms of the water quality necessary to effectively run the equipment. For example, a service company may not be able to use brackish water in their equipment.</td>
</tr>
<tr>
<td>Water utilities at a local level</td>
<td>Relevant, sometimes included</td>
<td>Where relevant, we consider local water utilities.</td>
</tr>
<tr>
<td>Other stakeholder, please specify</td>
<td>Please select</td>
<td></td>
</tr>
</tbody>
</table>

W3.3d

(W3.3d) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Each onshore asset has a water team that meets and qualitatively assesses many different risks associated with the different aspects of water usage. Additionally, Anadarko has a company wide water technical group that regularly meets to discuss water-related risks that could pose impacts to business.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain.
W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

A substantive change is a significant modification or expansion in the scope or nature of Anadarko’s direct operations (not suppliers) at a field level, as measured by the level of activity or production of an asset from sourcing, management or disposal of water. Anadarko has a deep portfolio of opportunities in the U.S. onshore, most of which would be considered unconventional resource plays. As such, these assets require access to water for drilling and completions operations. Without an adequate supply of water, Anadarko and/or its suppliers would need to develop alternatives, allocate capital to other assets in its portfolio, and/or consider reducing the level of activity in a given play. The threshold amount of change necessary will differ among operational plays based upon the economics involved with the required change. These considerations are a significant part of our investment, engagement and water-management strategies to ensure adequate supplies of and appropriate disposal of water at all of our U.S. onshore growth opportunities. Additionally, activity levels are evaluated continuously as part of our capital allocation process for each field. During this process, potential changes in operations and costs, including water availability, management and disposal, are considered.

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>4</td>
<td>Please select</td>
</tr>
</tbody>
</table>
Country/Region
United States of America

River basin
Rio Grande

Number of facilities exposed to water risk
1

% company-wide facilities this represents
26-50

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities
Please select

% company's total global revenue that could be affected
Please select

Comment
A facility is defined as an asset or field. Delaware - Facility 3

Country/Region
United States of America

River basin
Colorado River (Pacific Ocean)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
26-50

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities
Please select

% company's total global revenue that could be affected
Please select

Comment
A facility is defined as an asset or field. Greater Natural Buttes - Facility 4

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.
Country/Region
United States of America

River basin
Rio Grande

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Drought

Primary potential impact
Increased capital costs

Company-specific description
Temporary water stress translating to decreased supply, and likely impacts to transportation infrastructure. It could result in limitations to future growth if states have to restrict water use.

Timeframe
1 - 3 years

Magnitude of potential financial impact
Medium

Likelihood
About as likely as not

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response is dependent upon the magnitude of the drought; therefore, the cost is unknown.

Country/Region
United States of America

River basin
Rio Grande

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Increased water scarcity

Primary potential impact
Increased capital costs

Company-specific description
Possible limitations on surface water use and groundwater withdrawal could lead to project delays.

Timeframe
>6 years
Magnitude of potential financial impact
Medium

Likelihood
More likely than not

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response is dependent upon the magnitude of the drought; therefore, the cost is unknown.

Country/Region
United States of America

River basin
Rio Grande

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Seasonal supply variability/inter annual variability

Primary potential impact
Increased capital costs

Company-specific description
Seasonal water stress translating to decreased supply, and likely impacts to transportation infrastructure. It could result in limitations to future growth if states have to restrict water use.

Timeframe
>6 years

Magnitude of potential financial impact
Medium

Likelihood
More likely than not

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response is dependent upon the magnitude of the drought; therefore, the cost is unknown.
Country/Region
United States of America

River basin
Rio Grande

Stage of value chain
Supply chain

Type of risk
Regulatory

Primary risk driver
Regulatory uncertainty

Primary potential impact
Increased capital costs

Company-specific description
The potential revision or expansion of regulations on water quality and quantity could result in higher operating costs, increased production cycle time. An example is an increased groundwater sampling requirements.

Timeframe
1 - 3 years

Magnitude of potential financial impact
Medium

Likelihood
Please select

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Work with supplier to engage with regulators/policymakers

Description of response
A strategy of active engagement with regulators and policy makers through the trade organizations has been employed.

Cost of response

Explanation of cost of response
The cost is unknown.

Country/Region
United States of America

River basin
Mississippi River

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Increased water scarcity

Primary potential impact
Increased capital costs

Company-specific description
Seasonal water stress translating to decreased supply, and likely impacts to transportation infrastructure. It could result in limitations to future growth if states have to restrict water use

Timeframe
>6 years
Magnitude of potential financial impact
Medium

Likelihood
Likely

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the water scarcity; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response is dependent upon the magnitude of the drought; therefore, the cost is unknown.

Country/Region
United States of America

River basin
Mississippi River

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Drought

Primary potential impact
Increased capital costs

Company-specific description
Possible limitations on surface water use and groundwater withdrawal could lead to project delays.

Timeframe
>6 years

Magnitude of potential financial impact
Medium

Likelihood
Likely

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response is dependent upon the magnitude of the drought; therefore, the cost is unknown.
United States of America

River basin
Mississippi River

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Seasonal supply variability/inter annual variability

Primary potential impact
Increased capital costs

Company-specific description
Seasonal water stress translating to decreased supply, and likely impacts to transportation infrastructure. It could result in limitations to future growth if states have to restrict water use.

Timeframe
1 - 3 years

Magnitude of potential financial impact
Medium

Likelihood
Unlikely

Potential financial impact

Explanation of financial impact
The potential financial impact is unknown.

Primary response to risk
Work with supplier to engage with regulators/policymakers

Description of response
A strategy of active engagement with regulators and policy makers through the trade organizations has been employed.

Cost of response

Explanation of cost of response
The potential cost of response is unknown.

Country/Region
United States of America

River basin
Mississippi River

Stage of value chain
Supply chain

Type of risk
Reputation & markets

Primary risk driver
Community opposition

Primary potential impact
Loss of license to operate

Company-specific description
Community opposition of the use of water in completions could lead to restriction or loss of Anadarko's ability or license to operate. This could be a result of the need of water for agricultural and municipal uses.

Timeframe
1 - 3 years
Magnitude of potential financial impact
Medium

Likelihood
About as likely as not

Potential financial impact

Explanation of financial impact
The potential financial impact is unknown as a variety of factors unknown factors contribute to the impacts.

Primary response to risk
Work with supplier to engage with regulators/policymakers

Description of response

Cost of response

Explanation of cost of response
A strategy of active engagement with regulators and policy makers through the trade organizations has been employed.

Country/Region
United States of America

River basin
Colorado River (Pacific Ocean)

Stage of value chain
Supply chain

Type of risk
Physical

Primary risk driver
Drought

Primary potential impact
Increased capital costs

Company-specific description
Temporary water stress translating to decreased supply, and likely impacts to transportation infrastructure. It could result in limitations to future growth if states have to restrict water use.

Timeframe
1 - 3 years

Magnitude of potential financial impact
Medium-low

Likelihood
More likely than not

Potential financial impact

Explanation of financial impact
The potential financial impact depends on the magnitude of the drought; therefore, the potential financial impact is unknown.

Primary response to risk
Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers

Description of response
Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.

Cost of response

Explanation of cost of response
The cost of the response depends on the magnitude of the drought; therefore, the cost is unknown.

Country/Region
United States of America
<table>
<thead>
<tr>
<th>River basin</th>
<th>Colorado River (Pacific Ocean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of value chain</td>
<td>Supply chain</td>
</tr>
<tr>
<td>Type of risk</td>
<td>Physical</td>
</tr>
<tr>
<td>Primary risk driver</td>
<td>Increased water scarcity</td>
</tr>
<tr>
<td>Primary potential impact</td>
<td>Increased capital costs</td>
</tr>
<tr>
<td>Company-specific description</td>
<td>Possible limitations on surface water use and groundwater withdrawal could lead to project delays.</td>
</tr>
<tr>
<td>Timeframe</td>
<td>>6 years</td>
</tr>
<tr>
<td>Magnitude of potential financial impact</td>
<td>Medium-low</td>
</tr>
<tr>
<td>Likelihood</td>
<td>Likely</td>
</tr>
<tr>
<td>Potential financial impact</td>
<td></td>
</tr>
<tr>
<td>Explanation of financial impact</td>
<td>The potential financial impact depends on the magnitude of the water scarcity; therefore, the financial impact is unknown.</td>
</tr>
<tr>
<td>Primary response to risk</td>
<td>Promote investment in infrastructure and technologies for water saving, re-use and recycling among suppliers</td>
</tr>
<tr>
<td>Description of response</td>
<td>Alternative technologies for re-use and recycling have continued to be evaluated while at the same time, alternative water supply opportunities are being explored.</td>
</tr>
<tr>
<td>Cost of response</td>
<td></td>
</tr>
<tr>
<td>Explanation of cost of response</td>
<td>The cost of the response is dependent on the magnitude of the water scarcity; therefore, the cost is unknown.</td>
</tr>
</tbody>
</table>

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a
Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity
Efficiency

Primary water-related opportunity
Cost savings

Company-specific description & strategy to realize opportunity
Innovative water recycling and delivery systems have reduced costs in operations. For example in Colorado, a “water on demand” system has reduced the impact on the community of trucking water, reduced water usage and reduced costs. By constructing hundreds of miles of pipelines, there are 96% fewer trucks on the road and 88% fewer storage tanks.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Medium

Potential financial impact

Explanation of financial impact

Type of opportunity
Efficiency

Primary water-related opportunity
Improved water efficiency in operations

Company-specific description & strategy to realize opportunity
The increase of water reuse and recycling systems is resulting in improved water efficiency. For example, in Utah, a completions system creates temporary staging sites on existing well sites to treat and recycle flow back water, then move it to the next operation for reuse.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Low-medium

Potential financial impact

Type of opportunity
Other

Primary water-related opportunity
Other, please specify (Improved water measurement)

Company-specific description & strategy to realize opportunity
Improving the ability of the oil and natural gas industry to account for total lifecycle water use and generation, through enhanced water measurement. Anadarko has a water technical team currently working on developing a company-wide enhanced water-measurement program.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Please select

Potential financial impact

W5.1 Facility-level water accounting

(W5.1) For each facility referenced in W4.1c, provide coordinates, total water accounting data and comparisons with the previous reporting year.

Facility reference number
Facility 1

Facility name (optional)
Greater DJ Basin

Country/Region
United States of America

River basin
Mississippi River

Latitude

Longitude

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
Upstream

Total water withdrawals at this facility (megaliters/year)
8576

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
1609

Comparison of discharges with previous reporting year
Higher

Total water consumption at this facility (megaliters/year)
1

Comparison of consumption with previous reporting year
About the same

Please explain
The Greater DJ basin water consumption was 6,967 mega litres. This was higher than the total onshore consumption due to negative consumption in other plays. The levels of activity were similar between 2016 and 2017.

Facility reference number
Facility 2

Facility name (optional)
Powder River Basin

Country/Region
United States of America

River basin
Mississippi River

Latitude

Longitude
Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
Upstream

Total water withdrawals at this facility (megaliters/year)
60

Comparison of withdrawals with previous reporting year
About the same

Total water discharges at this facility (megaliters/year)
12

Comparison of discharges with previous reporting year
About the same

Total water consumption at this facility (megaliters/year)
44

Comparison of consumption with previous reporting year
About the same

Please explain
The Powder River Basin had similar levels of activity in 2016 and 2017.

Facility reference number
Facility 3

Facility name (optional)
Delaware Basin

Country/Region
United States of America

River basin
Rio Grande

Latitude

Longitude

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
Upstream

Total water withdrawals at this facility (megaliters/year)
9570

Comparison of withdrawals with previous reporting year
Higher

Total water discharges at this facility (megaliters/year)
12667

Comparison of discharges with previous reporting year
Higher

Total water consumption at this facility (megaliters/year)
1

Comparison of consumption with previous reporting year
About the same

Please explain
Due to the fact that the formation produces much more water than it accepts during completion operations, the consumption was - 3,097 mega litres.
Facility reference number
Facility 4

Facility name (optional)
Greater Natural Buttes

Country/Region
United States of America

River basin
Colorado River (Pacific Ocean)

Latitude

Longitude

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
Upstream

Total water withdrawals at this facility (megaliters/year)
3

Comparison of withdrawals with previous reporting year
Much lower

Total water discharges at this facility (megaliters/year)
2818

Comparison of discharges with previous reporting year
About the same

Total water consumption at this facility (megaliters/year)
1

Comparison of consumption with previous reporting year
About the same

Please explain
There was a decreased level of activity in the Greater Natural Buttes in 2017. Wells were still producing water but there was little withdrawal. The water consumption was -2,818 mega litres.

W5.1a

(W5.1a) For each facility referenced in W5.1, provide withdrawal data by water source.

Facility reference number
Facility 1

Facility name
Greater DJ Basin

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
8204

Brackish surface water/seawater
0

Groundwater - renewable
143

Groundwater - non-renewable
0

Produced water
205
Facility reference number
Facility 2

Facility name
Powder River Basin

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
56

Groundwater - non-renewable
0

Produced water
0

Third party sources

Comment

Facility reference number
Facility 3

Facility name
Delaware Basin

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
8859

Groundwater - renewable
701

Groundwater - non-renewable
0

Produced water
0

Third party sources

Comment

Facility reference number
Facility 4

Facility name
Greater Natural Buttes

Fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Brackish surface water/seawater
0

Groundwater - renewable
3
<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Please select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td></td>
</tr>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td></td>
</tr>
<tr>
<td>Groundwater - renewable</td>
<td></td>
</tr>
<tr>
<td>Groundwater - non-renewable</td>
<td>1609</td>
</tr>
<tr>
<td>Produced water</td>
<td>0</td>
</tr>
<tr>
<td>Third party sources</td>
<td>0</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

W5.1b

(W5.1b) For each facility referenced in W5.1, provide discharge data by destination.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>Greater DJ Basin</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>1609</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>0</td>
</tr>
<tr>
<td>Comment</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name</td>
<td>Greater Natural Buttes</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Groundwater</td>
<td>12</td>
</tr>
<tr>
<td>Facility reference number</td>
<td>Facility name</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Facility 3</td>
<td>Delaware Basin</td>
</tr>
<tr>
<td>Facility 4</td>
<td>Greater Natural Buttes</td>
</tr>
</tbody>
</table>

W5.1c
For each facility referenced in W5.1, provide the proportion of your total water use that is recycled or reused, and give the comparison with the previous reporting year.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name</th>
<th>% recycled or reused</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
<td>Greater DJ Basin</td>
<td>11-25%</td>
<td>Much higher</td>
<td>An increased focus and goals were placed on increasing the recycling and reuse of produced water and flowback in 2017.</td>
</tr>
<tr>
<td>Facility 1</td>
<td>Greater Natural Buttes</td>
<td>None</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td>Facility 3</td>
<td>Delaware Basin</td>
<td>None</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td>Facility 4</td>
<td>Greater Natural Buttes</td>
<td>None</td>
<td>About the same</td>
<td></td>
</tr>
</tbody>
</table>

(W5.1d) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?
Water withdrawals – total volumes

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water withdrawals – volume by source

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water withdrawals – quality

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water discharges – total volumes

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water discharges – volume by destination

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water discharges – volume by treatment method

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.

Water discharge quality – quality by standard effluent parameters

% verified
76-100

What standard and methodology was used?

Water discharge quality – temperature

% verified
76-100

What standard and methodology was used?

Water consumption – total volume

% verified
Not verified

What standard and methodology was used?
We do not externally verify the data.
W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Commitment to water stewardship and/or collective action</td>
<td>Anadarko has an internal multi-level water strategy and a public and company-wide water statement on the website (http://www.anadarko.com/Responsibility/Sustainable-Development/HSE/Water-Management/). The website states: "Anadarko recognizes that effective water management and water conservation are essential to developing all energy resources for our world. The availability of water, combined with varying municipal, industrial, agricultural and other demands, affects governments, businesses and individuals in many parts of the world. Anadarko respects water as a natural resource, and where feasible, recycles water used in our operations." The company offers education to customers (utilities) and suppliers that are interested in learning more about how we are continually working to minimize the impacts of our operations on communities and the environment, including water.</td>
</tr>
</tbody>
</table>

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes

W6.2a

(W6.2a) Identify the position(s) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of Individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other, please specify (Executive Vice President)</td>
<td>Water topics are discussed in scheduled monthly meetings.</td>
</tr>
</tbody>
</table>
(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - some meetings</td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding corporate responsibility strategy</td>
<td></td>
</tr>
<tr>
<td>Various water topics/risks are reviewed in scheduled monthly meetings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W6.3

(W6.3) Below board level, provide the highest-level management position(s) or committee(s) with responsibility for water-related issues.

W-FB6.4/W-CH6.4/W-EU6.4/W-OG6.4/W-MM6.4

(W-FB6.4/W-CH6.4/W-EU6.4/W-OG6.4/W-MM6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

No, and we do not plan to introduce them in the next two years

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, trade associations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Anadarko actively engages in multiple trade associations to influence public policy to ensure it is in alignment with Anadarko water policy.

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td></td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td></td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td></td>
</tr>
</tbody>
</table>
(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>Anticipated forward trend for CAPEX (+/- % change)</th>
<th>Water-related OPEX (+/- % change)</th>
<th>Anticipated forward trend for OPEX (+/- % change)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

No

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

Yes

Please explain

Water related delivery, recycling, reuse, discharge, and disposal prices are set internally at a basin level.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Please select</td>
<td>Goals include engaging with public policy makers to advance sustainable water policies and management. Anadarko supports states in addressing concerns with water disposal from the oil and gas industry.</td>
</tr>
</tbody>
</table>
W9.1

(W9.1) Has your organization identified any linkages or tradeoffs between water and other environmental issues in its direct operations and/or other parts of its value chain? Yes

W9.1a

(W9.1a) Describe the linkages or tradeoffs and the related management policy or action.

<table>
<thead>
<tr>
<th>Linkage or tradeoff</th>
<th>Tradeoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of linkage/tradeoff</td>
<td>Increased wastewater treatment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of linkage/tradeoff</th>
<th>Policy or action</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the increase in water usage, waste water treatment has been tested, resulting in more solid waste.</td>
<td>We regularly assess results of treatment when evaluating water management options.</td>
</tr>
</tbody>
</table>

W10. Verification

W10.1

(W10.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1d)? No, but we are actively considering verifying within the next two years

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Row</th>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitch Ingram, Executive Vice President</td>
<td>Board/Executive board</td>
</tr>
</tbody>
</table>
W11.2

(W11.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Yes

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting my response</th>
<th>Public or Non-Public Submission</th>
<th>I am submitting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am submitting my response</td>
<td>Public</td>
<td>Investors</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms